Nuclear reactions and production of radioisotopes Assignment-1

- 1. Calculate the threshold energy for meson production for the following reactions: (i) $p(\gamma, \pi^+)n$, (ii) ¹²C(d, π^+)¹⁴C. Mass of π + meson = 273 M_e, where M_e =mass of an electron.
- 2. Use the Q value equation to show that in an elastic collision, the kinetic energy acquired by the struck particle when it is projected at an angle θ is $E_2=4E_1M_1M_2\cos^2\theta/(M_1+M_2)^2$.
- 3. Calculate the Coulomb barrier for the reaction ${}^{12}C + {}^{93}Nb \rightarrow {}^{105}Ag$. Take $r_0=1.5$ MeV. Calculate the minimum energy of ${}^{12}C$ which is required to induce the above reaction. Also calculate the excitation energy and maximum angular momentum (in \hbar) of compound nucleus formed when projectile energy is 70 MeV.
- 4. Calculate the cross section for the reaction ${}^{59}Co(n,\gamma){}^{60}Co$ at neutron energy of 1 eV, assuming the resonance at 8.0 eV with level spin =3, using Briet Wigner formula. Take Γ_n =38 eV, Γ_γ =0.22 eV and $\Gamma=\Gamma_n + \Gamma_\gamma$. Ground state spin of ${}^{59}Co=7/2$.
- 5. 10 g of natural MoO₃ was irradiated in a reactor for 7 days at a flux of 5×10^{13} n/cm²/s. Calculate the activity of ⁹⁹Mo, in Curies, at the end of irradiation. Cross section for ⁹⁸Mo(n, γ)⁹⁹Mo = 0.14 barns, Half life of ⁹⁹Mo=66 hrs, abundance of ⁹⁸Mo=0.24. Also calculate the specific activity of ⁹⁹Mo produced.
- 6. $H_2^{18}O$ in a 1 mm thick cuvette is irradiated for 1 hr with 18 MeV proton beam of current 100µA. Calculate the activity of ¹⁸F (in Ci) produced at the end of bombardment by the reaction ¹⁸O(p,n)¹⁸F. Abundance of ¹⁸O=98%, density of $H_2^{18}O$ =1.11 g/cm³, Cross section for the reaction = 50 mbarn, $T_{1/2}$ of ¹⁸F = 109 minutes.